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1. INTRODUCTION

The so-called Polya algorithm is the construction of a best L
approximation as the limit of unique best L, approximations as p - co. This
limit is known to exist in a number of situations, and in each case, the limit
function is a best L, approximation which is better than the others in some
way. There are also examples in which the Polya algorithm fails to converge.
See [1, Theorem 1.1; 2, Theorem 1; 8, Sects. 1-5; 9, Sects. 12-7; 10,
Theorem 1].

In this article, we consider the Polya algorithm in two quite different
settings. In the first, we consider the problem of approximating functions in
L (I) by non-decreasing functions. We show that, in general, the algorithm
fails to converge a.e. by constructing a bounded, Lebesgue measurable
function 4 on [0, 2] such that lim sup 4,(x) > lim inf 4,(x) for x € |1, 2}].

The second setting involves approximating functions in L (2, (7, u; X) by
functions in L (2, %, u; X), where (2, (7,u) is a probability space, .# is
sub-g-algebra of &, and X is a uniformly convex Banach space. If X =R,
the Polya algorithm converges. This was shown by Darst in [2]. In fact, if

L) = lim £, (x),

where f, is the best L, approximation to f, then f |, is a best L,
approximation to f for each £ € .#. This property makes /., a uniquely best
best L approximation to f in this setting. If X is an arbitrary uniformly
convex Banach space, the proof used in [2] can be appropriately modified by
using Chebyshev centers and diameters.
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210 DARST, LEGG, AND TOWNSEND
2. MONOTONE APPROXIMATION IN L_(I)

We show that the Polya algorithm in general fails to converge for
functions h € L (1), where I is a finite interval. For convenience we have
I=10,2|. Specifically, we construct a bounded Lebesgue measurable
function A(x) on [0, 2] and sequences (p,) and (g,) tending to oo so that if

h, is the best L -approximate to h by non-decreasing functions, then for

some ¢ > 0,
hy, (x) > h(x) + 4¢ for x€]l1,2|

and
ho (x) < h(x) + 2¢ for x€|l1,2]

for sufficiently large k. Clearly then A,(x) does not converge as p—+ oo for
any x € [1,2].
Let p, = 2** and g, = 3", Define

Xp, =1 —[(2/3) + (1/7y*]
and
Yo, =1-1(2/3)™
We list several properties of (xpk) and ( qu) in the following lemma, which

we state without proof.

Lemma 1. (i) x, <y, <X, .
(ii) Xp, = 1 andy,,k—> 1 as k— oo.
(i) 11—y, =0[(1/7)] as k- co.
(iv) 1—x, =o(l—y,)ask- .
Now for k=1, 2,..., define the intervals
Ay =[x, x, + (2/3)™),
B, = (x,,+ (2/3)%%,,),
Ch= Vg0 Yq, + (1/2)(2/3)%],
and
Dy = (y,, + (1/2)2/3)% x,,  )-

Let
A= U 4,V )

k=1
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and
B = U (B Y D))
k=1
Now define h(x) by
h(x)=28 if xElO,xpl]UA
=0 if xeB
=6 if x€|1,2]

LEMMA 2. Let 0<e<1/8 be fixed and let h, denote the best L

approximate to h by non-decreasing functions. Then for sufficiently large k,

h,(x)> 6+ 4¢ Jor x€ll,2].

Proof. If not, then for some arbitrarily large values of k,
h, (x) <6+ 4¢ for x€(0,1].
Define
Ry (x)=h, (x) if xe[0,x,]
=6+ 8¢ if x€(x,,2)

Since |h(x) — h, (x)| > 2 — 4¢ for x € 4, we have

D:fyh—h |Pkdy—f|h—h*|"kdy
0 Pk 0 P

> (2 —4e)™ (2/3)F — [(2 — 86)" (1 + o(1))(2/3)
+ (6 + 8e)™ (1/7)7 + (8e)™]

2~ 8¢
2 —4¢

— (2 — dey* (2/3) [1 _ ( )pk(l +0(1))J +o(1).

Thus for sufficiently large &k, D > 0, which contradicts the definition
of i, .
Pk

LEMMA 3. Let ¢ and h, be as in Lemma 2. For sufficiently large k,

ho(x)<6+2  for x€[L2)
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Proof. If not, then let

zy=inf{x € [0, 2]: A, (x) > 6 + 2¢}

and
w,=inf{x € [0, 2]: h, (x) > 6 + €}
and define
hg(x) = h, (x) if x€[0,w,)
=6+¢ if x€ [w,?2]
Also let

2 ~2
D=j0 |h—hqk|"kdy—J0 b — h|% d.
We now consider four cases, depending on the location of z,.

Case 1. If z, € [1,2), then a better L, -approximate can be obtained by
lowering A, (x) to 6 + 2¢ on [z;, 2], yielding a contradiction.

Case 2. YW z,€ly,,x, ) then z,=yp,. For if z,€(y, +
(1/2)(2/3)%, x,, ), then a better L, -approximate can be obtained by
lowering 4, (x) to 6+ 2¢ for xe [zk, o)oand if z € (qu,qu
(1 /2)(2/3)‘“‘) then a better L, -approximate can "be obtained by raising A, (x)
to Ay (y,, + (1/2)(2/3)% for ‘xe (Va5 Ve, + (1/2)(2/3)%]. Hence zk—yq
Now “since [A(x) — b, (x)] > 6 + 2¢ for x€ (y, +(1/2)(2/3)%, x,, ) and

W (b~ hg, | —h — k|7 du > —(2 — €)% we have

D 2 (6 + 2¢)% (1 — o(1))(1/2)(2/3)"
— [ = &)™ (1/2)(2/3)" + (6 + &)™ (1 — o(1))(1/2)(2/3)*
et (2 e)]

=6+ 20 (/23" [1 -0 - (G5 ) = (525) (0 —e1)

4 (62;285 )Qk 2(3/2)% ] +o(1).

Thus for sufficiently large k, D is positive, and so h;"k would be a better
qu—approximate.

Case 3. Ifz, € [0, ¥,,)» then an argument similar to that at the beginning
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of case 2 shows that z, <x, . Since |hj(x) — h(x)| <6+ ¢ for x >w, and
Lho, () — h(x)| > 6 + 2¢ for x € (x,, + (2/3)% y,,), we have

D > (6 + 26)™ (1 — o(1))(1/7)* — 2(6 + &)™

o2 1o -2 (EL) 7]

Clearly (6 + 2¢)% (1/7)*—> oo as k— oo and (6 +¢&/6+ 2¢)9% 77> 0 as
k — oo. Thus for sufficiently large k, D is positive, and h;; would be a better
L, -approximate.

Case 4. 1If z, € [x, ,1), then using the fact that 4, is constant on
intervals of the form (x,,y,) and y,,x, ) and using techniques similar to
those used in Cases 2 and 3, it can be shown that

[ = g = 11 = B 1) du > —[o((26)))

Then, since |h(x) — h, (x)| > 2¢ for x € (1,2), and [A(x) — hy(x)| <6+ & for
X € |z,, 1), we have

D> (26" — [0((2e)) + (6 + €)% 2237 + 6%,

Since p,,,=2"""=4" and q, = 3%, we have (6 + &)< (2)(2/3)**' - 0 as
k — oo so rapidly that D is positive for sufficiently large k. Hence h;“k would
be a better L, -approximate.

We have thus proved the following theorem:

THEOREM 4. There exists a bounded Lebesgue measurable function h(x)
defined on [0, 2] such that lim, _, . h,(x) does not exist for x € (1, 2]. Hence
the Polya algorithm in general fails to converge in L (I), where I is a finite
interval.

Remarks. 1t is easy to show that if A(x) is a two-valued function on I,
then lim, . A (x) exists a.e. and equals the average of the two values. The
function 4 in the example has three values, and hence in some sense is a
minimal counterexample.

This example shows that two nice results concerning the convergence of
the Polya algorithm do not generalize to this case. The first is the result of
Darst and Sahab, [3], that the algorithm converges if A(x) is quasi-
continuous. The second is the result of Darst, (2], that the algorithm

640/38/3-2
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converges if 4 is (7-measurable and /4, must be .#-measurable, where .# is a
sub-g-algebra of (7. This example shows that .# cannot be taken to be a sub-
o-lattice of (7.

3. VECTOR VALUED FUNCTIONS

In this section we discuss the best best L approximation to a vector-
valued function. The method of proof used in [2] is adapted to this situation
by using Chebyshev diameters and centers.

DEFINITION. Let S be a bounded subset of a normed vector space. The
Chebyshev radius of S is defined by

r(S) = inf{p: S < B(p, x) for some x}
and x, is a Chebyshev center of S if
S < B(r(S), x,).

The Chebyshev diameter of S is d(8) = 2r(S). It is known that if X is a
uniformly convex Banach space, then every non-empty bounded subset S of
X has a unique Chebyshev center, denoted by c¢(S). The Chebyshev radius
and center satisfy the following continuity property:

Given ¢ > 0, there exists y > 0 such that if § and T are contained in the
unit ball of X and the Hausdorff distance D(S, T) < v, then

|d(S)—d(T) <¢ and le(S) —e(T)]] < e. (*)

See |5, Section 33].

Let (2, ¢%, u) be a probability space, and let .# be a sub-g-algebra of (7. If
X is a uniformly convex Banach space, let 4 =L _(R,, u;X) and
B=L_(0, %, u;X) See [4, Chap. 4| for a discussion of these spaces. If
SE A, let f, be the best approximate to fin L, norm by elements of B. We
may assume || f(x)|| < I for all x € 2, and hence also that || /,(x)|| < 1 for all
x€ N and all p> 1.

THEOREM 2. lim,  f,(x) exists a.e.

Actually, since there are uncountably many real numbers p > 1 and any f,
can be changed on a set of measure zero, we cannot guarantee that a single
exceptional set of measure zero exists in Theorem 2. We must interpret the
conclusion of Theorem 2 to mean

There exists a single function f, (x) such that if {p;} is any sequence of
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real numbers satisfying 1 < p; and lim, , , p; = oo, then lim,_ . f, (x) =f.(x)
a.e.

This interpretation of convergence must also be made in Darst’s original
paper [2]. Since we can interlace any two sequences, it is enough to prove

lim f, (x) exists a.e.,
- !

where {p,} is a fixed sequence satisfying lim,_ , p, = co. Henceforth when we
refer to a number p, we mean p € {p;} and so we can omit the subscripts.

Before proving this theorem, we need some preliminary results. Recall that
a vector x € X is in the essential range of fif

uf i) >0

for every open neighborhood @ of x. We let f(E) denote the essential range

of flg.

The following fact about uniformly convex spaces will be very useful in
what follows:

If R> 1 is fixed and ¢ > 0, there is a y > 0 such that if s +y <R and
[x—y|>¢, then r(B(s + %, Xx)NB(s + 7)) <s—7 (x%)

Hence if ¢ > 0, let y(¢) be a number satisfying y(e) < ¢, () and (=x*).

DEeFINITION.  For any G € (7 and ¢ > 0, we say that {S,,..,S,} is an ¢-
antipodal system (for G) if for each i,

(a) §,€aG,

(b) u(S)>0,

(c) d(f(S)) <¥(e)/4,

(d) d(f(G))—d({f(US))) <yle)

The following lemmas show that an e-antipodal system exists for all G
with #(G) > 0 and ¢ > 0, and n depends only on ¢.

LEMMA 3‘ Let EngEn+l’ EO: U En’ rn= r(f(En))’ and xn :c(f(En))
for n=0,1,2..... Then r,—r, and x,— X, as n— oo.

Proof. We have r, /" F<r,.
For n < m we have

f(E,) € Blx,,r,)

and

fE,)Sf(E,) S B(Xp 1)
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Hence
f(En) gBT(')Cn’ rn)mE(xm’ rm)'

This implies that {x,} is a Cauchy sequence, since if not, there would exist
& > 0 such that ||x, — x,,|| > ¢ for some arbitrarily large n and m with n < m.
It would follow from (xx) that

rn<r(§(xn5rn)m§(xm’rm)) < rm_y(g)/z

if n and m are large enough. This is a contradiction, and so {x,} is a Cauchy
sequence.
Let lim,_ ,  x, = X. Then if £ > 0,

Sf(E)EBX 7+¢)
for large n, and hence
f(E,) S B(x, 7+ ¢).
It follows that
f(E,) = B(%, P).
This implies 7> r,, and hence 7= r,. It follows that ¥ =x,.
LEMMA 4. Let E, S E, with u(E,)— u(E,). Define r, and x, as in
Lemma 3. Then r,— ry and x,— x, as n— oo.

Proof. Every function f is the uniform limit of countably valued
functions. It follows from (*) that we need only prove this lemma for coun-
tably valued functions. Let

g=2> a;;, (finite or infinite sum)
i

and label the sets such that u(G,) > u(G,, ,) > 0 for all i. Since u(E,) — u(E,)
and since g is constant on each G;, we have for each £,

k
g <U Gi)Eg(En)
i=1
for sufficiently large n. By Lemma 3, r(g(U%_, G;))— r, as k— co. Hence
r.,=r(g(E,))—r, as n— 00, Property () now implies x, = c(g(E,)) — x,

as n— o00.

LEMMA 5. Given GE€ T with u(G) >0 and € >0, there exists an ¢
antipodal system {S,,..., S,} for G. The choice of n depends only on e.
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Proof. Choose 0<d<e¢ such that 2y(d) < y(¢) and then choose
0 <1 <4/2 such 3y(n) < y(d). There exists a sequence of simple functions
{ f} converging to f in measure. By Lemma 4, there is an index k such that

| S =11 <y(y(m)

except on E, C G, where u(E,) is so small that
|y —d| <¥(9),

where d, =d(f(G\E,)) and d=d(f(G)). Clearly an n-antipodal system
{85 S, 1 exists for f, for the set G\E,. By the way # and J were chosen, it
may be verified that {S,..., S, } is a J-antipodal system for f for the set G\E,
and then that {S,..., S, } is an e-antipodal system for f for the set G.

We now begin to prove Theorem 2. Define the oscillation of fon E to be

O(f, E) = d(/(E)).

Let P be the set of all countable partitions 7 of £ by sets in .:#. For A >0
and 7 € P, let

o(h, m)= X" u(E),
where the sum is over all sets £ € 7 satisfying O(f, E) > h. Let

o, =nf{d(h, n): mE .7},

LEMMA 6. &, = d(h, n) for some n € .7
Proof. Same as in |2, Lemma 2],
Now if
El'=){E:E€n,O(f,E)>h},

then E” is uniquely determined up to sets of measure zero by the equation
o(h, m) = 6,. Hence we denote E? by E, if 8(k, 7) = 6,,. Also, if h, < h,, then
ﬂ(Ehz\Eh,) =0.

LEMMA 7. Let € > 0. Choose o so that o+ y(6) < y(¢). Let h,,h, >0
with hy —h < o. Let F€ .4, FSE, \E, . Then for all a >0, there exists
B>0 such that if HE. ¥, HS F and u(H) > a, then there exists an -
antipodal system {S,...., S,} for F such that

u(H M S}) > Bu(H)

foralli=1,.,n.
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Progf.  Suppose not. Then there exists ¢ > 0 and H, < F with u(H,) > «
such that for any ¢-antipodal system for F,

p(H,MNS;) <27 u(Hy)
for some 7, all k. We may assume
H(H, N S,) <27 u(H,)
for all k. Let
[e¢] =]
Hy= ﬂ U H,
n=1 k=n

Then u(H,)>a. Let {S,,...S,} be a oc-antipodal system for H,. Since
h, € O(f, Hy) < h,, it may be verified that {S,...,S,} is an e-antipodal
system for F. But since

g(H,NS) <2 *u(H,)<27*
for all k, we have
u(H, N S,)=u(S,)=0.

a contradiction.
Now let
D ,(x) = d({ (x4 ))
and
D(x)= ,,1132, D, (x).

Proof of Theorem 2. Let
E={ E,.
h>0

We show that D(x) =0 a.e. on E. Since f,(x) =/(x) a.e. on 2\E, this will
prove that lim _ ., f,(x) exists a.e.
Let ¢ > 0. It suffices to show that

u(x: D(x) = 4¢) < 2e.

Choose o(¢) small enough so that Lemma 7 holds and so that u(E\E,) < &.
Write

E= (E\EU)U (EU\EZH)U (EZU\EBU) e
=FyUF,UF, .
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Let {G,;}?° | be a partition of f (E) such that d(G,;) < y(¢)/4. Let
14 pi

pj}j=l

H,; =/, (G,)NF,

fori=1,2,..

Note that 3", ; u(H,;) < & where the sum is taken over all indices / and j
such that u(H,;) <e-27/7". Hence we consider H,;, where u(H,;)>
g-2 77" Let fcorrespond toa=¢ -2 /"' asin Lemma 7. Let m = c¢(f(F}))
and h = O(f, F,). We complete the proof by showing

So(Hy;) < B(2e, m) (2.1)
for sufficiently large p. Suppose this is not true. Then, since

a(f,(H,;)) < v(e)/4 <,
we have that f,(H

»ii) lies entirely outside of B(e, m). Let y =c(f,(H,)).
Then ||m — yf| > €. Now let {S,..., S,} be an e-antipodal system for F, such
that

tu(Hpji NS> ﬂﬂ(Hpji)

for all k. Some f(S,) meets the complement of B(k/2 + y(¢), y), since if not
we would have

U S, S B(#/2 + y(e), ») NV B(h/2 + y(e). m)

and consequently by (#%)

a(Us,) <n-2t0)

which would contradict the definition of g-antipodal system. Since
d(f(S,)) < y(g)/4, it follows that

S(S)S#(B(h/2 + 3y/4,5)).

Hence

I/ =SllP du > (h)2 + p(e)/2) u(H,; N S))

Hpji

> (h/2 +y(e)/2) ap.

On the other hand, if we define f* to equal f, off of H,;, and m on H
then

piir

| W=rp1r du< ap2y.

Hji
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Hence f is a better L -approximate to f than f, if p is chosen so that

(h/2 + 7(€)/2) aff > (h/2).

This is a contradiction, and (2.1) is verified. The proof of Theorem 2 is com-

pl

eted.
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